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We present a new method for the rapid, high order accurate evalua- 
tion of certain volume integrals in potential theory on general irregular 
regions. The kernels of the integrals are either a fundamental solution, 
or a linear combination of the derivatives of a fundamental solution of 
a second-order linear elliptic differential equation. Instead of using a 
standard quadrature formula or the exact evaluation of any integral, the 
methods rely on rapid methods of solving the differential equation 
which the kernel is the solution of. Therefore, the number of operations 
needed to evaluate the volume integral is essentially equal to the 
number of operations needed to solve the differential equation on 
a rectangular region with a regular grid, and the method requires no 
evaluation of the kernel. 0 1992 Academic press, IIIC. 

1. INTRODUCTION 

In this paper we present a new, high order accurate 
method for the rapid evaluation of certain volume integrals 
in potential theory on general regions. The kernels of the 
integrals are a fundamental solution, or a linear combina- 
tion of the derivatives of a fundamental solution of some 
second-order linear elliptic differential equation. What is 
different and important about these methods is that they 
avoid the use of any standard quadrature formula or the 
exact evaluation of any integral. Instead, they rely on rapid 
methods of solving the differential equation of which the 
kernel is the solution. In fact, the number of operations 
needed to evaluate the volume integral is essentially equal to 
the number of operations neded to solve the differential 
equation on a regular rectangular grid. In particular, one 
can evaluate integrals whose kernels are the Green function 
for the Poisson equation by using Fourier methods on a 
rectangular grid, or a fast Poisson solver. Furthermore, 
the method requires no evaluation of the kernel. Before 
applying the Poisson solver one only needs to compute 
special correction terms to the right-hand side of the 
Poisson equation at mesh points near the boundary of the 
irregular region, and these correction terms can be obtained 
by local calculations. (We note that is is not possible to 
evaluate these integrals by straightforward use of Poisson 
solvers, since they have discontinuities in their second 

derivatives across the region of integration.) The method we 
present can also be thought of as a way of solving elliptic 
differential equations whose solutions and gradients are 
continuous, but which have discontinuities in their second 
derivatives across some irregular boundary. 

The ability to evaluate these integrals rapidly is impor- 
tant when integral equation methods are used for solving 
inhomogeneous differential equations. This is because a par- 
ticular solution of the differential equation is given by the 
volume integral of the product of the fundamental solution 
of the differential equation and the inhomogeneous term. 
Once the volume integral has been evaluated, the problem 
is reduced to a homogeneous boundary value problem, 
which in turn reduces to a surface integral equation. 
Consider, for example, the problem Au = f on a two- 
dimensional region D, with Dirichlet boundary data u = g 
prescribed on aD. The solution u can be expressed as the 
sum of the volume integral D(X, y) = (1/27r) SD Iflog r dV 
and a harmonic function w with Dirichlet boundary data 
g-u. The function w can be expressed as the integral 
of a double layer density function, (1/2rc) Iao p(s) 
(a log r/an,) ds, where p is the solution of the following 
integral equation on aD: 

w+i jp(s) 
a log r(s, 6 ds 

an, 

= g(r) - U(f). 

See [lo]. Similar formulations hold when Neumann data is 
given. 

We note that integral equation methods for solving ellip- 
tic differential equations have become increasingly popular, 
in part due to the very effective methods for solving certain 
integral equations developed by Rokhlin [ 111 and others. 
We furthermore note that our ability to evaluate these 
volume integrals may allow us to solve other differential 
equations such as V . a(x, y, U) Vu = f, which are not 
normally solved using integral equation methods. (See [ 123 
and Section 3.) 
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These volume integrals also arise in other contexts. In 
particular, these integrals are needed when applying the 
Biot Savart law to evaluate the magnetic field induced by a 
conducting wire. This law says that the field B induced by 
a conducting wire is the curl of the volume integral of 
the product of the fundamental solution of the Poisson 
equation and the current density J: 

B(x,y,r)=Vxjjj Jr-&dr’dy’dz’ 

=& jjj;J*V(;)dK (1.1) 

where 

R = J(x - x’)~ + (y - y’)’ + (z - z’)~. 

Therefore, each of the three components of the field is 
equal to the sum of integrals whose integrands are com- 
prised of products of derivatives of the fundamental solution 
with components of the current density. For example, 

B.x = SIS (G,.Z, - GJ,.) d?‘, 
D 

where 

G = 1/4nR. 

It is seldom possible to evaluate these integrals analyti- 
cally when the geometry is complicated. Even if an exact 
formula is known, it can be expensive to evaluate. For 
example, the field due to a sequence of circular current 
loops is an expression which involves sums of elliptic 
functions [ 53. 

The most commonly used method of evaluating the 
integrals is by direct application of some quadrature for- 
mula. See, for example, [ 11. Unfortunately, this can be very 
expensive. In particular, a total of O(n6) operations would 
be required to evaluate the field by computing an integral at 
every point of an n by n grid, since the evaluation of each 
integral requires O(n3) operations, where n is the number of 
quadrature points in each direction. Even if the field were 
only needed at O(n2) points, O(n5) operations would be 
required. This is in contrast to O(n3 log n) operations 
required by our method. We also note that while the 
asymptotic operation count for direct evaluation is smaller 
for two-dimensional integrals than for three-dimensional 
integrals, the kernel, log I, is expensive to evaluate. 

There is, however, an even more serious difficulty with the 
straightforward use of quadrature formulas. The problem 
is that the kernels are unbounded as their arguments 
approach 0, that is, as the point at which the integral is 

being evaluated nears a point of integration. It is therefore 
very difficult to compute these integrals with any degree of 
accuracy at points in, or near, the domain of integration. 

In our method we overcome these problems. The region 
D over which the integral is to be evaluated, and the points 
at which the solution is needed, are embedded in some 
larger rectangular domain. On this larger region we use a 
rapid method of solving the related differential equation. 
For example, to evaluate the integral in (1.1) we embed the 
region of integration D in a larger region for which there is 
a fast Poisson solver, and to evaluate an integral whose 
kernel is a fundamental solution for the Helmholtz 
operator, (1/47~)(e’~‘/r), we embed the region in a region 
for which there is a fast solver for the three-dimensional 
Helmholtz equation. 

This method is similar to the method we developed in [9] 
for solving Laplace’s equation on an irregular region. There 
the problem was reduced to evaluating certain surface 
integrals. The main idea of our method is the following. Let 
U(x, y, z) be the function (integral) we wish to compute. 
Given a discretization L, of the differential operator, we 
compute an approximation to L, U at all points on the mesh 
of the embedding region. We then apply an operator that 
inverts L, to obtain an approximation to U. To compute 
L, U at points inside or outside the region of integration 
which have all of their neighbors on the same side of the 
boundary we use the fact that, up to truncation error, L, U 
is equal to LU which is known exactly. (It is of course equal 
to the value of the function with which the kernel is 
convolved.) However, because the integrals we compute 
necessarily have discontinuities in some of their derivatives 
at the edge of the domain of integration, we must compute 
special correction terms at certain mesh points near the 
boundary. It turns out that these correction terms can be 
computed in terms of the discontinuities in the derivatives of 
the integral and how far the mesh points are from the 
boundary. We show how to compute these discontinuities 
and how to use them to compute approximations to L, U. 

The organization of this paper is as follows. In Section 2 
of this paper we show how to compute the integrals whose 
kernels are a fundamental solution of, or the derivative of, 
the fundamental solution of the Laplacian, and in Section 3 
we discuss certain extensions of the method to the evalua- 
tion of other integrals. In Section 4 we provide results of 
numerical experiments. In particular, we compare our 
second- and fourth-order accurate methods with straight- 
forward use of Poisson solvers without corrections at the 
boundaries. 

2. THE EVALUATION OF INTEGRALS WHOSE 
KERNELS SATISFY LAPLACE’S EQUATION 

In this section we show how to evaluate integrals whose 
kernels are any fundamental solution of the Laplacian or 
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one of its derivatives. To simplify the discussion we first 
show how to evaluate a second-order accurate approxima- 
tion of an integral whose kernel is the fundamental solution 
of the Laplacian in the plane: 

U(x, y) = l/271 JlJ.(x’, y’) log Y(X, y, x’, y’) dx’ dy’. (2.1) 

In order to compute an approximation to this integral we 
first embed the region of integration D in some larger 
rectangular region R on which there is a uniform mesh. 

We evaluate U(x, y) by computing an approximation to 
its discrete Laplacian, A,,U, at all the mesh points of R. 
Once we have done this, we apply a fast Poisson solver. We 
note that a Poisson solver is merely an algorithm for 
inverting the discrete Laplacian. Therefore, if we provide the 
discrete Laplacian of a function at every mesh point and 
apply the fast solver, then we will have an approximation to 
the original function, whether or not is is smooth. 

It is easy to see how to compute an approximation to the 
live-point discrete Laplacian of U at points which have all 
their neighboring mesh points on the same side of dD. We 
use the fact that at points of R which are inside D, 

AU=f, (2.2a) 

and at points which are outside D, 

AU=O. (2.2b) 

Therefore, at mesh points (i,j) inside D which have their 
four neighboring mesh points (i + 1, j ), (i - 1, j ), (i, j + 1 ), 

B consists of x and0 

FIGURE 1 

and (i, j - 1) also inside D we can approximate the discrete 
Laplacian of U by the value offat that point, and at outside 
points which have all of their neighbors outside D, we 
approximate it by 0. That is, we set 

A,u(kj) =f(i,j) 

at points inside D whose neighbors are all inside D, and at 
points outside D, with no neighbors inside D, we set 

A,U(i,j)=O. 

Since U is not a smooth function, we cannot use either for- 
mula at points near dD. (We can easily see that U is not 
smooth at the boundary because its Laplacian is discon- 
tinuous there.) Therefore, at such points the values of the 
discrete Laplacian are not well approximated by the values 
of the exact Laplacian. 

In this section we show how to compute an approxima- 
tion to the discrete Laplacian of U at these other irregular 
mesh points, that is the set of points B which have one or 
more of their neighbors on the other side of aD. 

It turns out that to be able to compute such an 
approximation it is sufficient to known what the discon- 
tinuities in U and its derivatives in the coordinate directions 
are at the boundary of D. We note that the discrete 
Laplacian can be derived by using a Taylor series expan- 
sion. Such an expansion is not valid when there are 
discontinuities in derivatives, but if the discontinuities in 
derivatives are known, then they may be used to compute 
correction terms to the Taylor series. One can thereby attain 
an accurate approximation to the difference operator 
applied to the integral. In this section we first show how to 
compute the discontinuities in U, and then we show how to 
use them to evaluate the discrete Laplacian of U. 

To evaluate the discontinuities in U we use (2.2) and the 
fact U and its normal derivative are continuous across 
aD [7]. For a given function f defined on R which is 
discontinuous on aD = (x(t), y(t)) let [f(p)] denote the 
discontinuity infat a point p on aD. That is, let 

Cfk)l = lim .&‘I- lim .fW’). P’-P P” -P 
p’s D ~“6 D 

We assume that x(r) and v(t) have three continuous 
derivatives. Since an integral of the form (2.1) and its 
normal derivative are continuous across aD, 

cm)1 = 0 (2.3) 

and 

CUISP )I = ~(~)CUx(P)l-4~)CU,(P s)] = 0. (2.4) 
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By differentiating (2.3) in the tangential direction t, we see four equations [U,,,] = 0, [U,,,] = 0, [(AU),] = f,, and 
that [(AU),] =f,. We can continue using this method to 

compute discontinuities in higher order derivatives. 

cum =4wm + m~.m =o. (2.5) We now show how to use these discontinuities to deter- 
mine the discrete Laplacian at the irregular mesh points. Let 

Equations (2.4) and (2.5) imply that at all points, p E aD, B denote the set of such points, and let U(p) = u(p) for p in 
D, and let U(p) = ii(p) for p in R -D. To see how to com- 

C&l =o (2.6a) pute A,, U at points of B suppose, for example, that a point 
p is inside the region, but its neighbor to the right pE is not. 

and Let p* be the point where the line between p and pE, and 
intersects i3D, let h, be the distance between p and p*, and 

[U,.] =o. (2.6b) let h, = h - h, . See Fig. 2. 
By manipulating the Taylor series at p and pE, both 

By (2.2) there must be discontinuities in the second evaluated at p*, we can derive the following expression for 
derivatives of U. We differentiate (2.4) and (2.5) in the ii - u(p) (for details see [9]), 
tangential direction and use (2.6) to obtain 

ii(PE)-U(P)=(il(P*)-u(P*))+h*(ii,(P*)-u,(P*)) 
a(t)2 cu,,i + ~2 CU,,I + w~w,1 = 0 (2.7) 

+ x(~xx(P*)- 4P*)) 
~(~)Ji(~)C~u1-4~)3(~)Cqyl + 34Lx(P*) - %AP*)) 

+(~2(t)-~2(f))[U~~~,]=0. (2.8) 
+ h%(P) + w&,(P) + 3h3%Y.AP) 

By (2.2) we see = {known quantities} + hu,(p) 

CKXI + L-u,,,1 =f: (2.9) 
+ ;h2uYx(P) + Wh3), (2.10) 

Equations (2.7) (2.8), and (2.9) form a three by three linear where the known quantities can be computed in terms of 
system of equations that can be used to solve for [Ill,,], derivatives offand the boundary curve, and the distances of 
[U,,], and [U,] at any point on the boundary of D. The the irregular mesh points from the boundary. 
determinant of the system, (n(t)2 + j(t)2)2, is nonzero at all Now let p, be the mesh point to the left ofp. Ifp, is in D 
points, and, therefore, the equations have a unique solution. then 

We use similar methods to evaluate discontinuities in the 
third derivatives of U. There are four such derivatives, U,,y,, 
U xly2 u,,,, and Uyyy. To determine the discontinuities in U(Pw) - U(P) = -k(P) +; U,,(P) + O(h31. 

these derivatives we differentiate Eq. (2.6) and (2.7) in the 
tangential t direction and we differentiate (2.9) in both 
the normal and tangential directions; that is, we use the 

If not, 

U(pw) - U(p) = (known quantities} 

-hu,(P) +; U,,(P) + W3). 

In any case, 

U(pE) - 2U(p) + U(pw) = {known quantities} 

+ h2u,, + O(h3). 

Let pN be the point above p, and let ps be the point below 
I PS p. By the same arguments as above we have 

U(pN) - 2U(p) + U(ps) = {known quantities} 

FIGURE 2 + h2u,, + O(h3). 

581/100/2-3 
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It follows that h2A, U(p) = {known quantities} + 0(h3), 
since u,, + U, = 0. 

We note that we can also retain fourth-order Taylor 
series terms in our derivation. For example, (2.10) can be 
replaced by 

QE) - 4~) = (Q*) - u(P*)) + h,(fj,(p*) - u,(p*)) 
+ ;h:(fi.&*) -GAP*)) 
+ ih:L,(p*) - u,,,(P*)) + k(p) 
+ ih2uxx(p) + fh3U,,,(p) + Wh4). (2.11) 

By so doing we instead obtain a fourth-order accurate 
approximation to h2A, U(p) at points of B. 

If the boundary data, and therefore the solution u are 
sufficiently regular, this guarantees the accuracy of the 
approximation to U that we obtain after applying a fast 
Poisson solver. 

For mesh points (xi, JJ;) E B define the mesh function my 
to be the value of the extra terms in the discrete Laplacian 
we obtain by our procedure usingfand its derivatives. 

We define U, to be the solution of the following 
equations: 

(fil (i,j)~D-B 

A,U,= 
Lj+rn, (i,j)EBnD 

mv (i,j)EBnD’ 

lo (i,j)ER-D-B. 

If the values of mi,j are third-order accurate, then by 
applying a second-order accurate Poisson solver we obtain 
a second-order accurate approximation U,, to U; see 
P, 91. 

We can use the method we have just described to com- 
pute a fourth-order accurate approximation to U. In par- 
ticular, if values of Afare known we can use the following 
fourth-order accurate nine-point stencil [3]: 

1 4 1 
A;U=1/(6h2) [ 4 -20 4 1 U 

1 4 1 

=f+ h2 Af+ O(h4). 

This stencil is a linear combination of two second-order 
accurate stencils, 

A;=$A,+$A;, 

where 

I. 

We have already shown how to approximate A, U, so it only 
remains to see how to approximate Ai U. In order to com- 
pute this stencil we need to know the discontinuities in U 
and in its s and t derivatives, where s = (x + y)/& and 
t = (x - y)/$. The discontinuities can, of course, be com- 
puted in terms of the discontinuities in the x and y directions 
by using the chain rule. For example, if p* is on dD, then 

z&l*) - ii, = cu,(P*) - aP*)l+ cu,(P*) - qP*)l 

4 Jz . 

Once we know these discontinuities we may, in the same 
way as before, use them to compute a high order accurate 
approximation to A; U and thereby AZ U. After applying a 
fourth-order accurate Poisson solver we obtain a fourth- 
order accurate approximation to U. 

We can in the same way compute highly accurate 
approximations to three-dimensional integrals of the form 

u=&N"f( x', y', zl)i dV'. (2.12) 

Since we again have 

i 

f inside D Au= 
0 outside D, 

the problem again reduces to evaluating the discontinuities 
in the derivatives of U at the boundary of the region of 
integration. In order to do this we can use essentially the 
same method as in the two-dimensional case. Again we note 
that there are no discontinuities in either the tangential 
derivatives or in the normal derivative of U. This again 
implies that there are no discontinuities in any of the first 
derivatives of U, i.e., 

[U,] = [U,.] = [U,] =o. 

Suppose the boundary surface 3D is given by (x(s, t), y(s, t), 
z(s, t)), where s and t are two real parameters. To determine 
discontinuities in the six second derivatives of U we use the 
six equations 

CU,,l=O, CU,,l=O, Gu,,l=o* 

[U,,] =o, [U,,] =o, 

C~,,l + CU,,l + CUZZI =f: 

This system has a unique solution. Once determined, these 
discontinuity terms, and the discontinuities in the higher 
order derivatives can be used to compute approximations to 
the three-dimensional discrete Laplacian of U. By applying 
a three-dimensional fast Poisson solver, we obtain an 
approximation to U. 
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Before applying a Poisson solver we must, of course, 
supply appropriate boundary conditions. If we only need a 
particular solution of Poisson’s equation, then there is no 
difficulty, since the discontinuities in the derivatives of 
the integral, and therefore the discrete Laplacian, will be the 
same, independent of which fundamental solution of the 
Laplacian is used as the kernel. The integral we obtain an 
approximation to is the one associated with the same 
boundary conditions as the fast Poisson solver we use. For 
example, if we use a doubly periodic Poisson solver, then we 
obtain an approximation to the integral whose kernel is the 
doubly periodic Green function for the Laplacian. If we 
need an integral with a specific kernel, then we use the 
corresponding Poisson solver. 

A more difficult problem arises when we need to solve an 
exterior problem. In that case we can use a method 
originally developed by Hackney [2], and later improved 
by James [6], where one calculates the boundary potential 
by finding a set of correction charges on the boundary of the 
embedding region and then convolves them with a suitable 
Green function. This method, however, is more expensive 
than the others, since it requires the application of two 
Poisson solvers. 

We now show how to evaluate integrals whose kernels 
are derivatives, or a linear combination of the derivatives of 
the fundamental solution of some elliptic differential equa- 
tion. Consider, for example, an integral whose kernel is the 
gradient of a fundamental solution G for the Laplacian, 

W(P) = [JJ Mb’) .V,Gh P’) dV’> 
- D 

where M is a smooth vector field, p= (x, y, z), and 
p’ = (x, y’, z’). By noting that 

V,G= -V,.G 

and using the divergence theorem, we see that 

W(P) = {jjD VP, . Mb’) G(P, P’) & 

+ ?*I,, 
M.ngdS. (2.13) 

Since the second integral in the above equation is harmonic, 
AW=V.Min D and AW=O outside. 

To evaluate discontinuities in derivatives of volume 
integrals with differentiated kernels we use the fact that 
those integrals are derivatives of integrals with undifferen- 
tiated kernels. For example, suppose 

VP) = j-j-j,. fb’) G.xLs P’) dv’. 
D 

We use the fact that V(x, y, z) = U,(x, y, z), where 

U(P) = jj-j. fW G(P> P’) dv’. 
D 

Since we know how to compute the discontinuities in the 
derivatives of U, we can, of course, compute the discon- 
tinuities in the derivatives of V= U,. As before, once we 
know the discontinuity terms we can use them to 
approximate the discrete Laplacian of V. 

3. EXTENSIONS 

This method can also be used to evaluate other integrals 
which are not solutions of the Poisson equation. For exam- 
ple, consider a nonlinear interface problem of the form 

V.a(x,y, u)Vu=O, (3.1) 

where a(x, y, U) is positive definite in some bounded region 
D and equal to a constant a, in the unbounded region out- 
side D. Such problems arise in magnetostatics where u 
denotes the total scalar potential function, that is, the func- 
tion whose gradient is equal to the H field, a(x, y, U) is the 
permeability of the material in region D, and a, is the per- 
meability of free space. Suppose there is a current source in 
the unbounded region whose potential function is 4,. Then, 
by using the fact that u and a(x, y, u)(&/&) are continuous 
across dD and the divergence theorem (see [12]), one 
can show that on aD the solution u satisfies the integral 
equation, 

u(z)- - 
1 

n(‘+) + 1) 
(a([) - 1) u(i) y ds 

., 

+s /uVaVlogrdtj 
D I 

=&a,(z). (3.2) 

where 5(x, y) = a(x, ~)/a~, and inside D, u satisfies the 
equation 

a i0g y 
xrds+&i @&VlogrdV . 

5 D 1 (3.3) 

The volume integrals occurring in (3.2) and (3.3) are of the 
form (2.1) and can therefore be evaluated by the method 
described in Section 2, if an estimate for u is available. Rapid 
methods for evaluating this integral could therefore be used 
in an iterative method for solving (3.1). 
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TABLE I 

n=33 

Rms error = 0.3 1528-03 
Max. abs. error = O.l018E-02 at 0.72,0.50 
Max. rel. error = 0.6696E-03 at 0.72. 0.50 

n=65 

Rms error = 0.7468E-04 
Max. abs. error = 0.2193E-03 at 0.34,0.66 
Max. rel. error = O.l502E-03 at 0.33, 0.33 

n=129 

Rms error =O.l861E-04 
Max. abs. error = 0.5244E-04 at 0.66, 0.66 
Max. rel. error = 0.3564E-04 at 0.33, 0.66 

We can also evaluate integrals whose kernels G are the 
fundamental solution of other second-order self-adjoint 
linear elliptic differential operators L, when efficient 
methods are available for inverting the differential operator 
on a larger region. For example, we can evaluate integrals 
whose kernels are Hankel functions of the first kind by 
embedding the region of integration in a region for which 
there is a two-dimensional Helmholtz solver. The reason we 
can do this is because the fundamental solutions of these 
types of equations have the same types of singularities as the 
fundamental solutions of the Poisson equation [lo]. There- 
fore, the integrals will have the same kind of computable 
discontinuities across the boundary of the region of integra- 
tion. The integrals will also satisfy an inhomogeneous dif- 
ferential equation inside the region and the homogeneous 
equation outside. That is, an integral of the form 

w= w f*GdV 
D 

TABLE II 

n = 33 

Rms error = 0.5508E-03 
Max. abs. error = O.l316E-02 at 0.34,0.41 
Max. rel. error = 0.7729E-03 at 0.34, 0.41 

n=65 

Rms error = O.l905E-08 
Max. abs. error = 0.7384E-08 at 0.33,0.42 
Max. rel. error = 0.4449E-08 at 0.42, 0.31 

n= 129 

Rms. error = O.l339E-10 
Max. abs. error =0.7138E-10 at 0.43,0.32 
Max. rel. error = 0.4364E-10 at 0.42,0.32 

TABLE III 

n = 33 

Rms error = 0.2598E-01 
Max. abs. error = 0.6373E-01 at 0.50,0.66 
Max. rel. error = 0.3433E-01 at 0.50, 0.66 

n = 65 

Rms error = 0.7176E-02 
Max. abs. error = O.l828E-01 at 0.64,0.55 
Max. rel. error = 0.9576E-02 at 0.64, 0.55 

n=129 

Rms error = 0.2514E-02 
Max. abs. error = 0.6783E-02 at 0.63, 0.57 
Max. rel. error = 0.35798-02 at 0.63, 0.57 

will satisfy L W = f inside D and L W = 0 outside D. This 
means that we can again compute an approximation to a 
discrete difference operator L, applied to the integral W, 
invert the difference operator L,, and obtain an approxima- 
tion to the integral. 

4. RESULTS OF NUMERICAL EXPERIMENTS 

In this section we present results of numerical 
experiments. We tested this method on two problems for 
which we could evaluate the integrals analytically, both 
inside and outside the domain of integration. As our first 
test problem we evaluated the integral 

WA=&l x’,y’)log[(x-x’)‘+(y-y’)] dV’ 

withf(x, y) = 5. The domain of integration was the disk of 
radius y0 = 0.2 centered at (0.5, OS), D = (x -O.5)2 + 

TABLE IV 

n = 33 

Rms error = 0.2571E-01 
Max. abs. error = 0.6301E-01 at 0.34,0.50 
Max. rel. error = 0.33948-01 at 0.34, 0.50 

n = 65 

Rms error = 0.7264E-02 
Max. abs. error = O.l890E-01 at 0.45, 0.36 
Max. rel. error = 0.9902E-02 at 0.45, 0.36 

n=129 

Rms error = 0.2495E-02 
Max. abs. error = 0.6836E-02 at 0.43,0.37 
Max. rel. error = 0.3607E-02 at 0.43, 0.37 
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TABLE V TABLE VI 

n = 33 n = 33 

Rms error = 0.3514E-02 Rms error = 0.9743E-05 
Max, abs. error =O.l384E-01 at 0.31, 0.50 Max. abs. error = O.l285E-04 at 0.34,0.38 

i-l=65 n=65 

Rms error = 0.8122E-03 Rms error = 0.3216E-07 
Max, abs. error = 0.2732E-02 at 0.67,0.63 Max. abs. error = 0.2015E-06 at 0.59, 0.34 

n= 129 n= 129 

Rms error = 0.2036E-03 Rms error = 0.4020E-09 
Max. abs. error = 0.6895E-03 at 0.44,0.70 Max. abs. error = 0.2402E-08 at 0.32,0.44 
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(,v - 0.5)2 < 0.04. For this region the values of the integral where r = ,/(.x - OS)* + (y - 0.5)2. We embedded D in the 
are given by unit square and gave exact values of the integral at the edge 

of the embedding region. The computations were done in 

U(r)=0.5$-05+logr, forr<r, 
double precision on an IBM 3090 machine. The running 
time was essentialyy equal to the time needed to invert the 
discrete Laplacians. 

and 

U(r) = log r for r>r,, 

In Table I we present the results of calculations using the 
second-order accurate method, and in Table II we present 
results of using the fourth-order accurate method. Here n 

FIGURE 3 
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FIGURE 4 

denotes the number of mesh points in each direction across 
the square. These numbers show that the methods do 
achieve the predicted levels of accuracy. 

In Fig. 3 the errors we obtained in computing the integral 
U by the second-order accurate method on a 33 by 33 grid 
are graphed, and in Fig. 4 the errors obtained by the fourth- 
order accurate method are graphed. 

We also did calculations where we did not add the proper 
correction terms to the right-hand sides of the equations at 
mesh points near boundaries of the regions of integration 
before applying the solvers. That is, we set the discrete 
Laplacian of U equal to fat points inside D and equal to 0 
at points outside. Results of applying a second-order accute 
Poisson solver are given in Table III and results of applying 
a fourth-accurate solver are given in Table IV. These errors 
show that if we do not make corrections at the boundary, 
then we cannot expect even second-order accurate con- 
vergence. 

We also computed the x derivative of the integral in the 
previous example. In this case the values of the integral V 
are given by V(r)= (x-0.5)/r; for r < r,,, and V(r) = 
(x - 0.5)/r2 for r > ro. Results of calculations by the second- 
order accurate method are given in Table V and results of 
fourth-order accurate calculations are given in Table VI. 

We again achieved the predicted rates of convergence, 
although the errors were larger in magnitude. The larger 
errors obtained when computing the derivative function are 
not the results of numerical differentiation, but are due to 
the fact that the discrete Laplacian of the exterior function 
has a larger truncation error. That is, the derivatives of 
(X - 0.5)/r2 are larger than those of log r. 

CONCLUSIONS 

We have presented a rapid numerical method for the 
evaluation of certain volume integrals in potential theory. In 
particular, we have shown that second- and fourth-order 
acute approximations are easily obtained. We have also 
suggested how these methods might be used in other 
contexts. 
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